A discontinuous Galerkin discretization of elliptic problems with improved convergence properties using summation by parts operators
نویسندگان
چکیده
Nishikawa (2007) proposed to reformulate the classical Poisson equation as a steady state problem for linear hyperbolic system. This results in optimal error estimates both solution of elliptic and its gradient. However, it prevents application well-known solvers problems. We show connections discontinuous Galerkin (DG) method analyzed by Cockburn, Guzm\'an, Wang (2009) that is very difficult implement general. Next, we demonstrate how this can be implemented efficiently using summation parts (SBP) operators, particular context SBP DG methods such spectral element (DGSEM). The resulting scheme combines nice properties point view, high order convergence gradients, which one higher than what would usually expect from
منابع مشابه
BDDC methods for discontinuous Galerkin discretization of elliptic problems
A discontinuous Galerkin (DG) discretization of Dirichlet problem for second-order elliptic equations with discontinuous coefficients in 2-D is considered. For this discretization, balancing domain decomposition with constraints (BDDC) algorithms are designed and analyzed as an additive Schwarz method (ASM). The coarse and local problems are defined using special partitions of unity and edge co...
متن کاملA massively parallel nonoverlapping additive Schwarz method for discontinuous Galerkin discretization of elliptic problems
A second order elliptic problem with discontinuous coefficient in 2-D or 3-D is considered. The problem is discretized by a symmetric weighted interior penalty discontinuous Galerkin finite element method with nonmatching simplicial elements and piecewise linear functions. The resulting discrete problem is solved by a two-level additive Schwarz method with a relatively coarse grid and with loca...
متن کاملLocal discontinuous Galerkin methods for elliptic problems
In this paper, we review the development of local discontinuous Galerkin methods for elliptic problems. We explain the derivation of these methods and present the corresponding error estimates; we also mention how to couple them with standard conforming finite element methods. Numerical examples are displayed which confirm the theoretical results and show that the coupling works very well. Copy...
متن کاملDiscontinuous Galerkin Multiscale Methods for Elliptic Problems
Discontinuous Galerkin Multiscale Methods for Elliptic Problems Daniel Elfverson In this paper a continuous Galerkin multiscale method (CGMM) and a discontinuous Galerkin multiscale method (DGMM) are proposed, both based on the variational multiscale method for solving partial differential equations numerically. The solution is decoupled into a coarse and a fine scale contribution, where the fi...
متن کاملDiscontinuous Galerkin Methods for Elliptic problems
We provide a common framework for the understanding, comparison, and analysis of several discontinuous Galerkin methods that have been proposed for the numerical treatment of elliptic problems. This class includes the recently introduced methods of Bassi and Rebay (together with the variants proposed by Brezzi, Manzini, Marini, Pietra and Russo), the local discontinuous Galerkin methods of Cock...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational Physics
سال: 2023
ISSN: ['1090-2716', '0021-9991']
DOI: https://doi.org/10.1016/j.jcp.2023.112367